
   

 

 

 

 

 

 

 

 

 

Corresponding Author: Siti Hawa Aziz, Mathematics, Science & Computer Department, Politeknik Ungku Omar, Jalan Raja Musa 

Mahadi, 31400 Ipoh, Perak, Malaysia., 0195599442 

 

12 

 

Journal of Engineering and Science Research 2 (4): 12-19, 2018 

e-ISSN: 2289-7127 

© RMP Publications, 2018 

DOI: 10.26666/rmp.jesr.2018.4.3 

Polynomial Interpolation in Matlab  

 
Siti Hawa Binti Aziz and Zuliana Bt Abdul Mutalib  

Mathematics, Science & Computer Department, Politeknik Ungku Omar, 

Jalan Raja Musa Mahadi, 31400 Ipoh, Perak, Malaysia. 

 

Abstract: The problem of constructing such a continuous function is called data fitting. Many times, data given 

only at discrete points. With interpolation, we seek a function that allows us to approximate f(x) such that 

functional values between the original data set values may be determined. The process of finding such a 

polynomial is called interpolation and one of the most important approaches used are Lagrange interpolating 

formula. In this study, researcher determining the polynomial interpolation by using Lagrange interpolating 

formula. Then, a mathematical modelling was built by using MATLAB programming to determine the 

polynomial interpolation for a given points using the Lagrange method. The result of the study showed that the 

manual calculating and the MATLAB mathematical modelling will give the same answer for evaluated x and 

graph. 
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INTRODUCTION              

 

The problem of constructing a continuously defined 

function from a given discrete data is unavoidable 

whenever one wishes to manipulate the data in a way 

that requires information not included explicitly in the 

data. Interpolation, by polynomials or other functions, 

is a rather old method in applied mathematics. More 

generally, the process of reconstructing a curve, 

surface, or any other geometric object from certain 

known data is called interpolation, a word that is 

derived from the Latin word interpolare which means 

“to refurbish” or “to patch” [1]. Gasca mention that it 

is already indicated by the fact that, apparently, the 

word ‘interpolation’ itself has been introduced by J. 

Wallis as early as 1655 [2]. Compared to this, 

polynomial interpolation in several variables is a 

relatively new topic and probably only started in the 

second-half of the last century with work in. In view of 

its increasing relevance, it is only natural that the 

subject of interpolation is receiving more and more 

attention these days. Sir Edmund Whittaker, a 

professor of Numerical Mathematics at the University 

of Edinburgh from 1913 to 1923, said “the most 

common form of interpolation occurs when we seek 

data from a table which does not have the exact values 

we want” [3]. Many problems concerning the 

applications of neural networks, such as in pattern 

recognition and systems control, can be converted into 

the ones of approximating multivariate functions by the 

superposition of activation functions of the neural 

networks, for which an extensive study on 

approximation by neural networks has been carried out 

in a huge literature [4]. 

 

       There are four types of interpolation such as 

piecewise constant interpolation, linear interpolation, 

polynomial interpolation and spline interpolation. In 

some sense, polynomials are the simplest type of 

interpolates to work with, as their definition only 

involves a finite number of additions, subtractions, and 

multiplications. The fact that polynomial interpolants 

can suffer from Runge's phenomenon (see Figure 1) 

has given them a slightly bad reputation. In general, it 

is not wise to use high-degree interpolating 

polynomial, and equal-spaced interpolation points to 
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approximate a function on an interval [a,b]  unless the 

interval is sufficiently small. The Figure 1 is a well-

known example of the difficulty of high-degree 

polynomial interpolation using equally-spaced points, 

and it is known as Runge’s example. The simplicity of 

the polynomial, however, makes them perfectly 

suitable to be used as the building blocks of other 

interpolating functions with better behavior. 

 

 
Figure 1 The red curve is the Runge function.The blue curve 

is a 5th-order interpolating polynomial (using six equally 

spaced interpolating points).The green curve is a 9th-order 

interpolating polynomial (using ten equally spaced 

interpolating points). At the interpolating points, the error 

between the function and the interpolating polynomial is (by 

definition) zero. Between the interpolating points (especially 

in the region close to the endpoints 1 and −1), the error 

between the function and the interpolating polynomial gets 

worse for higher-order polynomials. 

 

The two most important approaches in interpolation are 

Newton’s interpolating formula and Lagrange’s 

interpolating formula. In this study, researcher will 

show only the Lagrange approaches which can be 

introduced and developed at the precalculus level in the 

context of fitting polynomials to data.  

 

       For this study, researcher use the MATLAB 7.8.0 

(R2009a) which doesn’t have a Lagrange function for 

polynomial interpolation. This version has many 

coding for polynomial but doesn’t have specific 

functions for Lagrange. As the method of Lagrange 

polynomials is not suited towards numeric 

computation, it is not implemented in MATLAB. So, 

to solve this problem, researcher design a command 

depend on manual calculation of Lagrange 

Interpolation. It used the basic built-in command such 

as loop and plot; and compatible it with another 

command. Lagrange interpolating polynomials are 

implemented in the MATLAB as 

LARGRANGEPOLY and this command only have in 

certain version of MATLAB.   

 

LITERATURE REVIEW 

 

       According to Meijering, the problem of 

interpolation by finite or divided differences had been 

studied at the beginning of the 20th century by 

astronomers, mathematicians, statisticians, and 

actuaries and most of the now well-known variants of 

Newton’s original formulae had been worked out [3]. 

There are many researches that have been done about 

the polynomial interpolation.  A new approach to 

multivariate Lagrange interpolation by polynomials via 

finite differences has been given and leading to, 

algorithms for the practical computation of 

interpolating polynomials [5]. These algorithms cover 

both aspects of classical univariate polynomial 

interpolation for example in computation of the 

Lagrange fundamental polynomials as well as a 

Newton method. There are many researches that have 

been done about the polynomial interpolation. 

Polynomial interpolation has been used to solve many 

problems in Mathematics. T.Yabe and T.Aoki from 

Japan have developed a new universal solver for 

hyperbolic equations by using a cubic-polynomial 

interpolation [6]. 

  

        Lane concerned with a practical method for fitting 

an ordered set of data in space with a free-form curve, 

with no specific function or parameterization given for 

the data. Problems such as this arise routinely in a 

variety of disciplines from the Arts to Engineering and 

Science. The techniques presented in the thesis is for 

data in 2 plane (2 dimensions), but can be adapted to 

many dimensions [7]. He also has implement 

algorithms in MATLAB to further explore the 

feasibility of an automated routine which will examine 

an ordered set of data and, with possible user 

interaction, produce a fitted curve within specified 

conditions and tolerances. In considering the problem, 

he seeks to fit a G1 cubic Bezier curve to the ordered 

set of data using least squares approximation. 

 

       In other research, Saeur focuses on speed and 

robustness of the both algorithms which is Lagrange 

and Newton method [5]. From his research, he found 

that the smoothness of the interpolated function can 

hardly affect the Lagrange method. Wang also has done 
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a study on interpolation which is cubic spline 

interpolation [8]. Besides studying the cubic spline 

interpolation and its applications in numerical analysis 

such as representing functions by approximating 

polynomial and data correlation, he also did cubic 

splines interpolation with simulations in MATLAB. 

 

    According to Vikstrom, there are several benefits of 

starting the algorithm development process in 

MATLAB and then ending it in C. MATLAB offers a 

wide selection of functions, automatic memory 

handling of variables and other interesting features that 

allows the engineer to focus on the function of the 

algorithm instead of the practical implementation. 

MATLAB also simplifies the algorithm testing process 

with its ability to easily produce plots and reports. 

However, the process to translate the MATLAB code 

to a language which is more suitable for hardware 

implementation such as C is time consuming and error 

prone [9]. 

   

      A research has been done on the practical 

implementation of the two methods which is Newton 

and Lagrange to compute the solution of polynomial 

interpolation problems. Wilhelm Werner in his journal 

has shown that the Lagrangian form of the interpolating 

polynomial can be calculated with the same number of 

arithmetic operations as the Newtonian form [10]. For 

a small degrees of the interpolating polynomial(𝑛 ≪

20), the new interpolation algorithm introduced in this 

paper as satisfactory as Newton interpolation does. In 

critical situations, however, where interpolation 

polynomials of very high degree must be evaluated, 

both algorithms require a special arrangement of the 

interpolating points to avoid numerical instabilities 

[10].  

. 

     Farea has used the MATLAB to solve a polynomial 

with degree 5 in her thesis paper [11]. It has shown that 

by using MATLAB, we can calculate the roots of eight 

degree polynomial which cannot be calculated manually 

since there is no radical formula. An obvious fact, 

however, is that the MATLAB routines are easier to 

handle and therefore are much more suitable for the 

casual user who is mainly interested in interactively 

experimenting with polynomial interpolation without 

having to write and compile a program [2]. On the other 

hand, the C++ routines in MPI are much more trimmed 

for efficiency, but in order to apply them clearly a 

certain background in programming is needed to use 

classes in an appropriate way.  

 

MOTIVATION OF THE STUDY 

 

1. This study explores the usage of Lagrange in solving 

univariate polynomial fitting.  

2. Developing mathematical modeling using MATLAB 

software which can insert input and get the polynomial 

fitting and a graph instantly. So, by using this 

mathematical modeling, students will understand about 

the polynomial interpolation. 

3. MATLAB programming is a very simple and user 

friendly software compare to C and FORTRAN. The 

flexibility of MATLAB GUI to create applets was the 

reason to this choice. So, by using MATLAB in this 

study, researcher can explore furthermore about 

polynomial such as solving the polynomial with a given 

point by solving a matrix and Lagrange.  

4. In this study, researcher does not use the built-in 

function in MATLAB for Lagrange or Polynomial, but 

the researcher design the command from the manual 

calculation. The polynomial with points given can be 

shown in a graph which has been designed by 

researchers. 

5. This application will help the students to have a clear 

view about what is a polynomial interpolation, how to 

solve it by using Matrix method and Lagrange; and the 

graph of the polynomial interpolation. 

 

LAGRANGE INTERPOLATING POLYNOMIAL 

DEGREE 1 

 

The manual calculation to find Lagrange interpolating 

polynomial if two points are given is shown below: 

x 2 -3 

f(x) 5 8 

Since the points given is 2 points, so we need to calculate  

𝐿0(𝑥) and 𝐿1(𝑥). 
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We know the equation for 𝑃(𝑥) is,  

)()()( 1100 xLfxLfxP +=  

Substitute the value of 𝐿0(𝑥), 𝐿1(𝑥), 𝑓0 and 𝑓1 
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Let x=2.5. Substitute the value of 𝑥 in the equation of 

𝑃(𝑥). 
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Then, we get the answer for 𝑃(𝑥) is 4.700. 

 

Then, the M-file for Lagrange interpolating 

polynomial was built. The results after we run the M-file 

are shown in Figure 2 and Figure 3. Figure 2 show the 

command window in MATLAB after run the M-file. As 

we can see, we can insert the points and the x value. 

Then it will calculate value of 𝐿0, 𝐿1 and P(x). Figure 3 

show the graph generated which is just a straight line 

and the points inserted is shown in the graph. 

 

 
Figure 2 The command window in MATLAB for 

Lagrange Interpolating Polynomial Degree 1 

 

Figure 3 The graph generated in MATLAB for 

Lagrange Interpolating Polynomial Degree 1 

 

LAGRANGE INTERPOLATING POLYNOMIAL 

DEGREE 2  

 

The manual calculation to find Lagrange interpolating 

polynomial if three points are given is shown below: 

x 1 6 -2 

f(x) 8 4 5 

Since the points given are 3 points, so we need to 

calculate  𝐿0(𝑥), 𝐿1(𝑥) and 𝐿2(𝑥). 
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The equation for 𝑃(𝑥) is as below 

).()()()( 221100 xLfxLfxLfxP ++=  

Substitute the value of 𝐿0(𝑥), 𝐿1(𝑥), 𝐿2(𝑥), 𝑓0, 𝑓1 and 

𝑓2. 
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Let x=-3. Substitute the value of 𝑥 in the equation of 

P(x) 
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Then, we get the answer for 𝑃(𝑥) is 3.100. 

 

Then, we convert the calculation into 

MATLAB command and the results after we run the M-

file are shown in Figure 4 and Figure 5. Figure 4 show 

the command window in MATLAB for the M-file. As 

we can see, we can insert the points and the x value. 

Then it will calculate value of 𝐿0, 𝐿1, 𝐿2 and 𝑃(𝑥). 
Figure 5 show the graph generated which is either 

maximum or minimum graph and the points inserted is 

shown in the graph.  

 

 
Figure 4 The command window in MATLAB for 

Lagrange Interpolating Polynomial Degree 2 

 

 
Figure 5 The graph generated in MATLAB for 

Lagrange Interpolating Polynomial Degree 2 

 

 

 

 

 

LAGRANGE INTERPOLATING POLYNOMIAL 

DEGREE 3 

 

The manual calculation to find Lagrange interpolating 

polynomial if four points are given is shown below : 

x 1 0 3 -2 

f(x) 2 2 5 -3 

Since the points given are 4 points, so we need to 

calculate  𝐿0(𝑥), 𝐿1(𝑥), 𝐿2(𝑥) and 𝐿3(𝑥). 
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The equation for 𝑃(𝑥) is as below 

)()()()()( 33221100 xLfxLfxLfxLfxP +++=  

Substitute the value of 𝐿0(𝑥), 𝐿1(𝑥), 𝐿2(𝑥), 𝐿3(𝑥) 𝑓0, 

𝑓1, 𝑓2 and 𝑓3. 
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Let x=2, substitute the value of 𝑥 in the equation of 𝑃(𝑥). 
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Then, we get the final answer is 2.4667. 

 

Then, we convert the calculation into 

MATLAB command. The results after we run the M-file 

are shown in Figure 6 and Figure 7. Figure 6 show the 

command window in MATLAB for the M-file. As we 

can see, we can insert the points and the x value. Then it 

will calculate value of 𝐿0, 𝐿1, 𝐿2, 𝐿3 and 𝑃(𝑥). Figure 7 

show the graph generated and the points inserted is 

shown in the graph.  

 

 
Figure 6 Command window in MATLAB for Lagrange 

Interpolating Polynomial Degree 3 

 

 
Figure 7 The graph generated in MATLAB for Lagrange 

Interpolating Polynomial Degree 3 

Since the above model is limited for a certain 

points, so, we build another mathematical modeling 

which is more general and suitable for any points. The 

results after we run the M-file are shown in Figure 8 and 

Figure 9. Figure 8 show the command window in 

MATLAB for the M-file. As we can see, we can insert 

the 𝑘 points and the 𝑥 value. Then it will calculate value 

of 𝐿1 … … 𝐿𝑘 and 𝑃(𝑥). Figure 9 show the graph 

generated and the point inserted is shown in the graph. 

 
Figure 8 Command window in MATLAB for General 

Lagrange Interpolation 

 
Figure 9 Graph generated in MATLAB for General 

Lagrange Interpolation 
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DISCUSSION 

 

In this study, we show the MATLAB coding 

and the result for a method to interpolate data which is 

Lagrange Interpolation polynomial. Before we write the 

command in MATLAB, we need to do a manual 

calculation so that we can define the general function of 

Lagrange for each number of given points. The manual 

calculation by using Lagrange is shown. Then, we 

convert each calculation into MATLAB coding.  

 

In the MATLAB coding, we didn’t use the 

specific built-in Lagrange command, but we compatible 

the manual calculation into a simple built-in command 

in MATLAB. The most important command that we are 

using for each degree of polynomial are input where we 

can insert the points and value of x that we want to 

interpolate and for loops which allow a group of 

commands to be repeated for a fixed, predetermined 

number of times. for loops command is important as we 

want to plot the function into a graph.  

 

In above section, it shows the step by step how 

to solve the Lagrange from degree 1 until degree 3 by 

manual calculation and MATLAB coding. Equally, we 

can determine, both will give the same result for y or P. 

The Lagrange method is more complicated as we require 

to work out the value of 𝐿𝑛 and substitute in the 

equation: 

...)()()()()( 33221100 ++++= xLfxLfxLfxLfxP  

So, by using this application, we can calculate the value 

of 𝐿𝑛  for a given points. It also show the given points on 

the graph with the ‘o’ mark.  

 

As we can see from Figure 2, Figure 4 and 

Figure 6, every model only suits for a certain point. This 

is complicated as we want to save a time and get the 

answer quickly. So, to solve this problem, we build 

another mathematical modeling which can suit any 

number of points. It is shown in Figure 8. By using this 

model, we can solve Lagrange Interpolation Polynomial 

problems for any points. This model uses a more 

complicated command in MATLAB. We are still using 

the for loops command, but this time it was used more 

than three times in the command. Besides that, we also 

used the if-else-end command. This is because, the 

sequences of the commands must be conditionally 

evaluated on the basis of a relational test. The command 

between if and end statements are evaluated if all 

elements in expression are True (nonzero). The model 

also generate the graph for each Lagrange polynomial 

interpolation and hold the points inserted on the graph. 

So, this model will give a clear view for a students about 

the interpolation 

 

CONCLUSION AND RECOMMENDATION 

 

This mathematical modeling is more user 

friendly than the built-in command in MATLAB.We 

modified the command in MATLAB and make it more 

user friendly which is user or students just need to insert 

an input and it will automatically calculate the equation 

and show the graph. If we compare with the built-in 

command in MATLAB  to plot a polynomial graph for 

two points, it is complicated as we need to rewrite the 

command every time we want to insert an input.  

 

Same goes to Lagrange interpolation 

polynomial, if we calculate by using manual calculation, 

it will take a time and it was difficult to plot the graph 

instantly. So, by using the MATLAB model, it is more 

easier to determine the answer and time consuming. For 

all model, user can insert any points repeatedly without 

need to rewrite the command. However, there is some 

constraint when using all the model which is the value 

of x cannot be more than 10 or less than -10. This is 

because; we only limit the value of x in plotting graph 

from -10 till 10. So, this limitation can be solved by 

designing a model with wider limit of x. 

 

The simplicity of Lagrange interpolating 

formulas makes it widely used results in all areas where 

there are underlying calculations based on data.  Within 

Mathematics, the formulas provide a foundation for the 

development of methods in numerical integration and 

differentiation, approximation theory, and the numerical 

solution of differential equations.  Consequently, they 

become very important results in the interpolation 

theory of numerical analysis.  However, these ideas can 

also be valuable additions to a modern course in algebra 

or precalculus.  

 

Moreover, curve fitting has become an 

important topic in modern algebra and precalculus 

classes, though it is usually approached almost 

exclusively from the perspective of regression.  

Polynomial regression is usually limited by the available 
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technology such as graphing calculators up to fourth 

degree and Excel up to sixth degree.  

 

At least, precalculus is a place where the 

Newton and Lagrange formulas can be investigated by 

setting a sequence of what-if questions when we discuss 

polynomial curve fitting.  It is also a place to foster deep 

learning of Mathematics by using a number of topics 

together during the investigation.    

 

There are some limitation or constraint by 

using Lagrange method. While the Lagrange 

polynomials are easy to compute, they are difficult to 

work with. Furthermore, if new interpolation points are 

added, all of the Lagrange polynomials must be 

recomputed. So, we hope, in the future, there is a 

mathematical modeling by using Newton methods 

which is more stable than Lagrange. Besides that, we 

may design this modeling using other popular 

programming such as Maple and etc. 
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