

Corresponding Author: Siti Hawa Aziz, Mathematics, Science & Computer Department, Politeknik Ungku Omar, Jalan Raja Musa

Mahadi, 31400 Ipoh, Perak, Malaysia., 0195599442

12

Journal of Engineering and Science Research 2 (4): 12-19, 2018

e-ISSN: 2289-7127

© RMP Publications, 2018

DOI: 10.26666/rmp.jesr.2018.4.3

Polynomial Interpolation in Matlab

Siti Hawa Binti Aziz and Zuliana Bt Abdul Mutalib

Mathematics, Science & Computer Department, Politeknik Ungku Omar,

Jalan Raja Musa Mahadi, 31400 Ipoh, Perak, Malaysia.

Abstract: The problem of constructing such a continuous function is called data fitting. Many times, data given

only at discrete points. With interpolation, we seek a function that allows us to approximate f(x) such that

functional values between the original data set values may be determined. The process of finding such a

polynomial is called interpolation and one of the most important approaches used are Lagrange interpolating

formula. In this study, researcher determining the polynomial interpolation by using Lagrange interpolating

formula. Then, a mathematical modelling was built by using MATLAB programming to determine the

polynomial interpolation for a given points using the Lagrange method. The result of the study showed that the

manual calculating and the MATLAB mathematical modelling will give the same answer for evaluated x and

graph.

Key words: Data fitting, Polynomial, Interpolation, Lagrange interpolating formula, MATLAB

INTRODUCTION

The problem of constructing a continuously defined

function from a given discrete data is unavoidable

whenever one wishes to manipulate the data in a way

that requires information not included explicitly in the

data. Interpolation, by polynomials or other functions,

is a rather old method in applied mathematics. More

generally, the process of reconstructing a curve,

surface, or any other geometric object from certain

known data is called interpolation, a word that is

derived from the Latin word interpolare which means

“to refurbish” or “to patch” [1]. Gasca mention that it

is already indicated by the fact that, apparently, the

word ‘interpolation’ itself has been introduced by J.

Wallis as early as 1655 [2]. Compared to this,

polynomial interpolation in several variables is a

relatively new topic and probably only started in the

second-half of the last century with work in. In view of

its increasing relevance, it is only natural that the

subject of interpolation is receiving more and more

attention these days. Sir Edmund Whittaker, a

professor of Numerical Mathematics at the University

of Edinburgh from 1913 to 1923, said “the most

common form of interpolation occurs when we seek

data from a table which does not have the exact values

we want” [3]. Many problems concerning the

applications of neural networks, such as in pattern

recognition and systems control, can be converted into

the ones of approximating multivariate functions by the

superposition of activation functions of the neural

networks, for which an extensive study on

approximation by neural networks has been carried out

in a huge literature [4].

 There are four types of interpolation such as

piecewise constant interpolation, linear interpolation,

polynomial interpolation and spline interpolation. In

some sense, polynomials are the simplest type of

interpolates to work with, as their definition only

involves a finite number of additions, subtractions, and

multiplications. The fact that polynomial interpolants

can suffer from Runge's phenomenon (see Figure 1)

has given them a slightly bad reputation. In general, it

is not wise to use high-degree interpolating

polynomial, and equal-spaced interpolation points to

Siti Hawa Aziz and Zuliana Abdul Mutalib / Journal of Engineering and Science Research, 2 (4) 2018, Pages: 12-19

13

approximate a function on an interval [a,b] unless the

interval is sufficiently small. The Figure 1 is a well-

known example of the difficulty of high-degree

polynomial interpolation using equally-spaced points,

and it is known as Runge’s example. The simplicity of

the polynomial, however, makes them perfectly

suitable to be used as the building blocks of other

interpolating functions with better behavior.

Figure 1 The red curve is the Runge function.The blue curve

is a 5th-order interpolating polynomial (using six equally

spaced interpolating points).The green curve is a 9th-order

interpolating polynomial (using ten equally spaced

interpolating points). At the interpolating points, the error

between the function and the interpolating polynomial is (by

definition) zero. Between the interpolating points (especially

in the region close to the endpoints 1 and −1), the error

between the function and the interpolating polynomial gets

worse for higher-order polynomials.

The two most important approaches in interpolation are

Newton’s interpolating formula and Lagrange’s

interpolating formula. In this study, researcher will

show only the Lagrange approaches which can be

introduced and developed at the precalculus level in the

context of fitting polynomials to data.

 For this study, researcher use the MATLAB 7.8.0

(R2009a) which doesn’t have a Lagrange function for

polynomial interpolation. This version has many

coding for polynomial but doesn’t have specific

functions for Lagrange. As the method of Lagrange

polynomials is not suited towards numeric

computation, it is not implemented in MATLAB. So,

to solve this problem, researcher design a command

depend on manual calculation of Lagrange

Interpolation. It used the basic built-in command such

as loop and plot; and compatible it with another

command. Lagrange interpolating polynomials are

implemented in the MATLAB as

LARGRANGEPOLY and this command only have in

certain version of MATLAB.

LITERATURE REVIEW

 According to Meijering, the problem of

interpolation by finite or divided differences had been

studied at the beginning of the 20th century by

astronomers, mathematicians, statisticians, and

actuaries and most of the now well-known variants of

Newton’s original formulae had been worked out [3].

There are many researches that have been done about

the polynomial interpolation. A new approach to

multivariate Lagrange interpolation by polynomials via

finite differences has been given and leading to,

algorithms for the practical computation of

interpolating polynomials [5]. These algorithms cover

both aspects of classical univariate polynomial

interpolation for example in computation of the

Lagrange fundamental polynomials as well as a

Newton method. There are many researches that have

been done about the polynomial interpolation.

Polynomial interpolation has been used to solve many

problems in Mathematics. T.Yabe and T.Aoki from

Japan have developed a new universal solver for

hyperbolic equations by using a cubic-polynomial

interpolation [6].

 Lane concerned with a practical method for fitting

an ordered set of data in space with a free-form curve,

with no specific function or parameterization given for

the data. Problems such as this arise routinely in a

variety of disciplines from the Arts to Engineering and

Science. The techniques presented in the thesis is for

data in 2 plane (2 dimensions), but can be adapted to

many dimensions [7]. He also has implement

algorithms in MATLAB to further explore the

feasibility of an automated routine which will examine

an ordered set of data and, with possible user

interaction, produce a fitted curve within specified

conditions and tolerances. In considering the problem,

he seeks to fit a G1 cubic Bezier curve to the ordered

set of data using least squares approximation.

 In other research, Saeur focuses on speed and

robustness of the both algorithms which is Lagrange

and Newton method [5]. From his research, he found

that the smoothness of the interpolated function can

hardly affect the Lagrange method. Wang also has done

Siti Hawa Aziz and Zuliana Abdul Mutalib / Journal of Engineering and Science Research, 2 (4) 2018, Pages: 12-19

14

a study on interpolation which is cubic spline

interpolation [8]. Besides studying the cubic spline

interpolation and its applications in numerical analysis

such as representing functions by approximating

polynomial and data correlation, he also did cubic

splines interpolation with simulations in MATLAB.

 According to Vikstrom, there are several benefits of

starting the algorithm development process in

MATLAB and then ending it in C. MATLAB offers a

wide selection of functions, automatic memory

handling of variables and other interesting features that

allows the engineer to focus on the function of the

algorithm instead of the practical implementation.

MATLAB also simplifies the algorithm testing process

with its ability to easily produce plots and reports.

However, the process to translate the MATLAB code

to a language which is more suitable for hardware

implementation such as C is time consuming and error

prone [9].

 A research has been done on the practical

implementation of the two methods which is Newton

and Lagrange to compute the solution of polynomial

interpolation problems. Wilhelm Werner in his journal

has shown that the Lagrangian form of the interpolating

polynomial can be calculated with the same number of

arithmetic operations as the Newtonian form [10]. For

a small degrees of the interpolating polynomial(𝑛 ≪

20), the new interpolation algorithm introduced in this

paper as satisfactory as Newton interpolation does. In

critical situations, however, where interpolation

polynomials of very high degree must be evaluated,

both algorithms require a special arrangement of the

interpolating points to avoid numerical instabilities

[10].

.

 Farea has used the MATLAB to solve a polynomial

with degree 5 in her thesis paper [11]. It has shown that

by using MATLAB, we can calculate the roots of eight

degree polynomial which cannot be calculated manually

since there is no radical formula. An obvious fact,

however, is that the MATLAB routines are easier to

handle and therefore are much more suitable for the

casual user who is mainly interested in interactively

experimenting with polynomial interpolation without

having to write and compile a program [2]. On the other

hand, the C++ routines in MPI are much more trimmed

for efficiency, but in order to apply them clearly a

certain background in programming is needed to use

classes in an appropriate way.

MOTIVATION OF THE STUDY

1. This study explores the usage of Lagrange in solving

univariate polynomial fitting.

2. Developing mathematical modeling using MATLAB

software which can insert input and get the polynomial

fitting and a graph instantly. So, by using this

mathematical modeling, students will understand about

the polynomial interpolation.

3. MATLAB programming is a very simple and user

friendly software compare to C and FORTRAN. The

flexibility of MATLAB GUI to create applets was the

reason to this choice. So, by using MATLAB in this

study, researcher can explore furthermore about

polynomial such as solving the polynomial with a given

point by solving a matrix and Lagrange.

4. In this study, researcher does not use the built-in

function in MATLAB for Lagrange or Polynomial, but

the researcher design the command from the manual

calculation. The polynomial with points given can be

shown in a graph which has been designed by

researchers.

5. This application will help the students to have a clear

view about what is a polynomial interpolation, how to

solve it by using Matrix method and Lagrange; and the

graph of the polynomial interpolation.

LAGRANGE INTERPOLATING POLYNOMIAL

DEGREE 1

The manual calculation to find Lagrange interpolating

polynomial if two points are given is shown below:

x 2 -3

f(x) 5 8

Since the points given is 2 points, so we need to calculate

𝐿0(𝑥) and 𝐿1(𝑥).

5

3

)3(2

))3((

)(

)(
)(

10

1
0

+
=

−−

−−
=

−

−
=

xx

xx

xx
xL

5

2

23

)2(

)(

)(
)(

01

0
1

−

−
=

−−

−
=

−

−
=

xx

xx

xx
xL

Siti Hawa Aziz and Zuliana Abdul Mutalib / Journal of Engineering and Science Research, 2 (4) 2018, Pages: 12-19

15

We know the equation for 𝑃(𝑥) is,

)()()(1100 xLfxLfxP +=

Substitute the value of 𝐿0(𝑥), 𝐿1(𝑥), 𝑓0 and 𝑓1










−

−
+







 +
=

5

2
)8(

5

3
)5()(

xx
xP

Let x=2.5. Substitute the value of 𝑥 in the equation of

𝑃(𝑥).

700.4
5

25.2
)8(

5

35.2
)5()(=









−

−
+







 +
=xP

Then, we get the answer for 𝑃(𝑥) is 4.700.

Then, the M-file for Lagrange interpolating

polynomial was built. The results after we run the M-file

are shown in Figure 2 and Figure 3. Figure 2 show the

command window in MATLAB after run the M-file. As

we can see, we can insert the points and the x value.

Then it will calculate value of 𝐿0, 𝐿1 and P(x). Figure 3

show the graph generated which is just a straight line

and the points inserted is shown in the graph.

Figure 2 The command window in MATLAB for

Lagrange Interpolating Polynomial Degree 1

Figure 3 The graph generated in MATLAB for

Lagrange Interpolating Polynomial Degree 1

LAGRANGE INTERPOLATING POLYNOMIAL

DEGREE 2

The manual calculation to find Lagrange interpolating

polynomial if three points are given is shown below:

x 1 6 -2

f(x) 8 4 5

Since the points given are 3 points, so we need to

calculate 𝐿0(𝑥), 𝐿1(𝑥) and 𝐿2(𝑥).

15

)2)(6(

))2(1)(61(

))2()(6(

)20)(10(

)2)(1(
)(0

−

+−
=

−−−

−−−
=

−−

−−
=

xxxx

xxxx

xxxx
xL

40

)2)(1(

))2(6)(16(

))2()(1(

)21)(01
(

)2)(0(
)(1

+−
=

−−−

−−−
=

−−

−−
=

xxxx

xxxx

xxxx
xL

24

)6)(1(

)62)(12(

))6)(1(

)12
)(02

(

)1)(0(
)(2

−−
=

−−−−

−−
=

−−

−−
=

xxxx

xxxx

xxxx
xL

The equation for 𝑃(𝑥) is as below

).()()()(221100 xLfxLfxLfxP ++=

Substitute the value of 𝐿0(𝑥), 𝐿1(𝑥), 𝐿2(𝑥), 𝑓0, 𝑓1 and

𝑓2.



























−−
+

+−
+

−

+−
=

24

)6)(1(
)5(

40

)2)(1(
)4(

15

)2)(6(
)8()(

xx

xxxx
xP

Let x=-3. Substitute the value of 𝑥 in the equation of

P(x)

Siti Hawa Aziz and Zuliana Abdul Mutalib / Journal of Engineering and Science Research, 2 (4) 2018, Pages: 12-19

16

100.3)(

24

)63)(13(
)5(

40

)23)(13(
)4(

15

)23)(63(
)8()(

=

−−−−
+

+−−−
+

−

+−−−
=



























xP

xP

Then, we get the answer for 𝑃(𝑥) is 3.100.

Then, we convert the calculation into

MATLAB command and the results after we run the M-

file are shown in Figure 4 and Figure 5. Figure 4 show

the command window in MATLAB for the M-file. As

we can see, we can insert the points and the x value.

Then it will calculate value of 𝐿0, 𝐿1, 𝐿2 and 𝑃(𝑥).
Figure 5 show the graph generated which is either

maximum or minimum graph and the points inserted is

shown in the graph.

Figure 4 The command window in MATLAB for

Lagrange Interpolating Polynomial Degree 2

Figure 5 The graph generated in MATLAB for

Lagrange Interpolating Polynomial Degree 2

LAGRANGE INTERPOLATING POLYNOMIAL

DEGREE 3

The manual calculation to find Lagrange interpolating

polynomial if four points are given is shown below :

x 1 0 3 -2

f(x) 2 2 5 -3

Since the points given are 4 points, so we need to

calculate 𝐿0(𝑥), 𝐿1(𝑥), 𝐿2(𝑥) and 𝐿3(𝑥).

6

)2)(3(

))2(1)(31)(01(

))2()(3)(0(

))()((

))()((
)(

302010

321
0

−

+−
=

−−−−

−−−−
=

−−−

−−−
=

xxx

xxx

xxxxxx

xxxxxx
xL

6

)2)(3)(1(

))2(0)(30)(10(

))2()(3)(1(

))()((

))()((
)(

312101

320
1

+−−
=

−−−−

−−−−
=

−−−

−−−
=

xxx

xxx

xxxxxx

xxxxxx
xL

30

)2)()(1(

))2(3)(03)(13(

))2()(0)(1(

))()((

))()((
)(

321202

310
2

+−
=

−−−−

−−−−
=

−−−

−−−
=

xxx

xxx

xxxxxx

xxxxxx
xL

30

)3)()(1(

)32)(02)(12(

)3)(0)(1(

))()((

))()((
)(

231303

310
3

−

−−
=

−−−−−−

−−−
=

−−−

−−−
=

xxx

xxx

xxxxxx

xxxxxx
xL

The equation for 𝑃(𝑥) is as below

)()()()()(33221100 xLfxLfxLfxLfxP +++=

Substitute the value of 𝐿0(𝑥), 𝐿1(𝑥), 𝐿2(𝑥), 𝐿3(𝑥) 𝑓0,

𝑓1, 𝑓2 and 𝑓3.

Siti Hawa Aziz and Zuliana Abdul Mutalib / Journal of Engineering and Science Research, 2 (4) 2018, Pages: 12-19

17

+






 +−−
+








−

+−
=

6

)2)(3)(1(
)2(

6

)2)(3)((
)2()(

xxxxxx
xP










−

−−
−+







 +−

30

)3)()(1(
)3(

30

)2)()(1(
)5(

xxxxxx

Let x=2, substitute the value of 𝑥 in the equation of 𝑃(𝑥).

+






 +−−
+









−

+−
=

6

)22)(32)(12(
)2(

6

)22)(32)(2(
)2()(xP










−

−−
−+







 +−

30

)32)(2)(12(
)3(

30

)22)(2)(12(
)5(

4667.2
15

37
)(==xP

Then, we get the final answer is 2.4667.

Then, we convert the calculation into

MATLAB command. The results after we run the M-file

are shown in Figure 6 and Figure 7. Figure 6 show the

command window in MATLAB for the M-file. As we

can see, we can insert the points and the x value. Then it

will calculate value of 𝐿0, 𝐿1, 𝐿2, 𝐿3 and 𝑃(𝑥). Figure 7

show the graph generated and the points inserted is

shown in the graph.

Figure 6 Command window in MATLAB for Lagrange

Interpolating Polynomial Degree 3

Figure 7 The graph generated in MATLAB for Lagrange

Interpolating Polynomial Degree 3

Since the above model is limited for a certain

points, so, we build another mathematical modeling

which is more general and suitable for any points. The

results after we run the M-file are shown in Figure 8 and

Figure 9. Figure 8 show the command window in

MATLAB for the M-file. As we can see, we can insert

the 𝑘 points and the 𝑥 value. Then it will calculate value

of 𝐿1 … … 𝐿𝑘 and 𝑃(𝑥). Figure 9 show the graph

generated and the point inserted is shown in the graph.

Figure 8 Command window in MATLAB for General

Lagrange Interpolation

Figure 9 Graph generated in MATLAB for General

Lagrange Interpolation

Siti Hawa Aziz and Zuliana Abdul Mutalib / Journal of Engineering and Science Research, 2 (4) 2018, Pages: 12-19

18

DISCUSSION

In this study, we show the MATLAB coding

and the result for a method to interpolate data which is

Lagrange Interpolation polynomial. Before we write the

command in MATLAB, we need to do a manual

calculation so that we can define the general function of

Lagrange for each number of given points. The manual

calculation by using Lagrange is shown. Then, we

convert each calculation into MATLAB coding.

In the MATLAB coding, we didn’t use the

specific built-in Lagrange command, but we compatible

the manual calculation into a simple built-in command

in MATLAB. The most important command that we are

using for each degree of polynomial are input where we

can insert the points and value of x that we want to

interpolate and for loops which allow a group of

commands to be repeated for a fixed, predetermined

number of times. for loops command is important as we

want to plot the function into a graph.

In above section, it shows the step by step how

to solve the Lagrange from degree 1 until degree 3 by

manual calculation and MATLAB coding. Equally, we

can determine, both will give the same result for y or P.

The Lagrange method is more complicated as we require

to work out the value of 𝐿𝑛 and substitute in the

equation:

...)()()()()(33221100 ++++= xLfxLfxLfxLfxP

So, by using this application, we can calculate the value

of 𝐿𝑛 for a given points. It also show the given points on

the graph with the ‘o’ mark.

As we can see from Figure 2, Figure 4 and

Figure 6, every model only suits for a certain point. This

is complicated as we want to save a time and get the

answer quickly. So, to solve this problem, we build

another mathematical modeling which can suit any

number of points. It is shown in Figure 8. By using this

model, we can solve Lagrange Interpolation Polynomial

problems for any points. This model uses a more

complicated command in MATLAB. We are still using

the for loops command, but this time it was used more

than three times in the command. Besides that, we also

used the if-else-end command. This is because, the

sequences of the commands must be conditionally

evaluated on the basis of a relational test. The command

between if and end statements are evaluated if all

elements in expression are True (nonzero). The model

also generate the graph for each Lagrange polynomial

interpolation and hold the points inserted on the graph.

So, this model will give a clear view for a students about

the interpolation

CONCLUSION AND RECOMMENDATION

This mathematical modeling is more user

friendly than the built-in command in MATLAB.We

modified the command in MATLAB and make it more

user friendly which is user or students just need to insert

an input and it will automatically calculate the equation

and show the graph. If we compare with the built-in

command in MATLAB to plot a polynomial graph for

two points, it is complicated as we need to rewrite the

command every time we want to insert an input.

Same goes to Lagrange interpolation

polynomial, if we calculate by using manual calculation,

it will take a time and it was difficult to plot the graph

instantly. So, by using the MATLAB model, it is more

easier to determine the answer and time consuming. For

all model, user can insert any points repeatedly without

need to rewrite the command. However, there is some

constraint when using all the model which is the value

of x cannot be more than 10 or less than -10. This is

because; we only limit the value of x in plotting graph

from -10 till 10. So, this limitation can be solved by

designing a model with wider limit of x.

The simplicity of Lagrange interpolating

formulas makes it widely used results in all areas where

there are underlying calculations based on data. Within

Mathematics, the formulas provide a foundation for the

development of methods in numerical integration and

differentiation, approximation theory, and the numerical

solution of differential equations. Consequently, they

become very important results in the interpolation

theory of numerical analysis. However, these ideas can

also be valuable additions to a modern course in algebra

or precalculus.

Moreover, curve fitting has become an

important topic in modern algebra and precalculus

classes, though it is usually approached almost

exclusively from the perspective of regression.

Polynomial regression is usually limited by the available

Siti Hawa Aziz and Zuliana Abdul Mutalib / Journal of Engineering and Science Research, 2 (4) 2018, Pages: 12-19

19

technology such as graphing calculators up to fourth

degree and Excel up to sixth degree.

At least, precalculus is a place where the

Newton and Lagrange formulas can be investigated by

setting a sequence of what-if questions when we discuss

polynomial curve fitting. It is also a place to foster deep

learning of Mathematics by using a number of topics

together during the investigation.

There are some limitation or constraint by

using Lagrange method. While the Lagrange

polynomials are easy to compute, they are difficult to

work with. Furthermore, if new interpolation points are

added, all of the Lagrange polynomials must be

recomputed. So, we hope, in the future, there is a

mathematical modeling by using Newton methods

which is more stable than Lagrange. Besides that, we

may design this modeling using other popular

programming such as Maple and etc.

ACKNOWLEDGMENTS

The authors acknowledge the supervision and support

from Dr Ahmad Lutfi Amri Ramli from University of

Science Malaysia (USM), Penang, Malaysia.

REFERENCES

[1]Skeat, W.W. 1911. A concise etymological

dictionary of the English languange, Forgotten

Books.

[2]Gasca, M., & Sauer, T. 2000. Polynomial

interpolation in several variables. Advances in

Computational Mathematics.12(4), 377-410.
[3]Meijering, E. 2002. A Chronology of Interpolation:

From Ancient Astronomy to Modern Signal and

Image Processing. In: Proceedings of the IEEE. vol.

90, no. 3, pp. 319-42. March 2002.
[4]Li, X. 2002. Interpolation by Ridge Polynomials and

its application in neural networks. Journal of

Computational and Applied Mathematics.144, 197-

209.

[5] Saeur, T. & Xu, Y. 1995. On Multivariate

Lagrange Interpolation. Mathematics of

Computation. 64 (211) , 1147-1170.

[6] Yabe, T. & Aoki, T. 1991. A universal solver for

hyperbolic-equations by cubic-polynomial

interpolation. I. one-dimensional solver,

Comput.Phys.Cpmmun,66(1991),219-232.

[7]Lane, E.J. 1995. Fitting Data Using Piecewise G1

Cubic Bezier Curves.Naval Postgraduate School

Monterey.

[8]Wang, K. 2013. A study of cubic spline

interpolation. Rivier Academic Journal.9.(2).

[9]Vikstrom, A. 2009. A study of automatic translation

of MATLAB code to C code using software from

the MathWorks. (Master), Lulea University of

Technology.

[10]Werner, W. Polynomial Interpolation : Lagrange

versus Newton. Mathematics of

computation.43(167), 205-217

[11]Hussain, F.A. (1994),Solving polynomial equations

from 2000 B.C. through 20TH Century. (Master),

Oregon State University

